Портфолио проекта: Неевклидова геометрия (Геометрия Лобачевского): различия между версиями
Строка 13: | Строка 13: | ||
'''''Геометрия Лобачевского (гиперболическая геометрия)''''' — одна из неевклидовых геометрий, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского. | '''''Геометрия Лобачевского (гиперболическая геометрия)''''' — одна из неевклидовых геометрий, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского. | ||
Лобачевский строил свою геометрию, отправляясь от основных геометрических понятий и своей аксиомы, и доказывал теоремы геометрическим методом, подобно тому, как это делается в геометрии Евклида. Основой служила теория параллельных линий, так как именно здесь начинается отличие геометрии Лобачевского от геометрии Евклида. Все теоремы, не зависящие от аксиомы о параллельности, общим объёмом геометрии, и образуют так называемую абсолютную геометрию, к которой относятся, например, теоремы о равенстве треугольников. Вслед за теорией параллельности строились другие разделы, включая тригонометрию и начала аналитической и дифференциальной геометрии. | |||
Десятки работ ежегодно публикуются в этой области. Современные исследования все больше требуют делового владения геометрией Лобачевского. | Десятки работ ежегодно публикуются в этой области. Современные исследования все больше требуют делового владения геометрией Лобачевского. | ||
Я выбрала данную тему по нескольким причинам: | |||
#Теория геометрии Лобачевского помогает взглянуть по-другому на окружающий нас мир. | #Теория геометрии Лобачевского помогает взглянуть по-другому на окружающий нас мир. |
Версия 19:48, 3 декабря 2021
Авторы проекта
Репникова Лариса Дмитриевна
Неевклидова геометрия (Геометрия Лобачевского)
=Геометрия, 10 класс=
Краткая аннотация проекта
Геометрия Лобачевского (гиперболическая геометрия) — одна из неевклидовых геометрий, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского.
Лобачевский строил свою геометрию, отправляясь от основных геометрических понятий и своей аксиомы, и доказывал теоремы геометрическим методом, подобно тому, как это делается в геометрии Евклида. Основой служила теория параллельных линий, так как именно здесь начинается отличие геометрии Лобачевского от геометрии Евклида. Все теоремы, не зависящие от аксиомы о параллельности, общим объёмом геометрии, и образуют так называемую абсолютную геометрию, к которой относятся, например, теоремы о равенстве треугольников. Вслед за теорией параллельности строились другие разделы, включая тригонометрию и начала аналитической и дифференциальной геометрии.
Десятки работ ежегодно публикуются в этой области. Современные исследования все больше требуют делового владения геометрией Лобачевского.
Я выбрала данную тему по нескольким причинам:
- Теория геометрии Лобачевского помогает взглянуть по-другому на окружающий нас мир.
- Это интересный, необычный и прогрессивный раздел современной геометрии.
- Она дает материал для размышлений – в ней не все просто, не все ясно с первого взгляда, чтобы ее понять, нужно обладать фантазией и пространственным воображением.
Работая над данным проектом, я поставила перед собой такие задачи, как рассмотреть историю возникновения неевклидовой геометрии, познакомиться с личностью Лобачевского и его работой и определить значение геометрии Лобачевского в современной науке.
Планируемые результаты обучения
После завершения проекта учащиеся приобретут следующие умения:
- личностные:
• самостоятельно искать нужную информацию и правильно ее использовать;
• ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры;
• критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
• представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
• креативность мышления, инициатива, находчивость, активность в достижении поставленной цели;
• умение контролировать процесс и результат учебной математической деятельности;
• способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
- метапредметные:
• видеть математическую задачу в контексте различных проблемных ситуаций, в окружающей жизни;
• находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
• понимать и использовать математические средства наглядности (презентации, графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
• выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;
• понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
• умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
• умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.
- предметные:
• понимать, чем отличается геометрия Лобачевского от геометрии Евклида;
• различать модели неевклидовой геометрии;
• видеть и понимать различие в теоремах и аксиомах обычной геометрии, изучаемой в школе, и геометрии Лобачевского;
• понимать, что геометрические формы являются идеализированными образами реальных объектов; использовать геометрический язык для описания предметов окружающего мира;
• использования имеющихся знаний для «открытия» нового.
Вопросы, направляющие проект
Существует ли геометрия, которая отличается от привычной нам евклидовой геометрии?
Проблемные вопросы
- Как возникла неевклидова геометрия?
- Для чего нужна неевклидова геометрия?
- Какое значение имеет геометрия Лобачевского в современной науке?
Учебные вопросы
- Кто такой Н.И. Лобачевский?
- Как и когда он сделал свое открытие?
- Что представляет собой геометрия Лобачевского?
- Какие существуют модели геометрии?
- Где применяется геометрия Лобачевского?
Этапы и сроки проведения проекта
Этап 1:
Этап 2:
Этап 3: