Портфолио проекта: Неевклидова геометрия (Геометрия Лобачевского): различия между версиями
Строка 28: | Строка 28: | ||
После завершения проекта учащиеся приобретут следующие умения: | После завершения проекта учащиеся приобретут следующие умения: | ||
*''личностные:'' -самостоятельно искать нужную информацию и правильно ее использовать; | *''личностные:'' | ||
-самостоятельно искать нужную информацию и правильно ее использовать; | |||
-формировать познавательный интерес к предмету; | -формировать познавательный интерес к предмету; |
Версия 19:07, 3 декабря 2021
Авторы проекта
Репникова Лариса Дмитриевна
Неевклидова геометрия (Геометрия Лобачевского)
Геометрия, 10 класс
Краткая аннотация проекта
Геометрия Лобачевского (гиперболическая геометрия) — одна из неевклидовых геометрий, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского.
Лобачевский строил свою геометрию, отправляясь от основных геометрических понятий и своей аксиомы, и доказывал теоремы геометрическим методом, подобно тому, как это делается в геометрии Евклида. Основой служила теория параллельных линий, так как именно здесь начинается отличие геометрии Лобачевского от геометрии Евклида. Все теоремы, не зависящие от аксиомы о параллельности, общим объёмом геометрии, и образуют так называемую абсолютную геометрию, к которой относятся, например, теоремы о равенстве треугольников. Вслед за теорией параллельности строились другие разделы, включая тригонометрию и начала аналитической и дифференциальной геометрии. Десятки работ ежегодно публикуются в этой области. Современные исследования все больше требуют делового владения геометрией Лобачевского.
Я выбрала данную тему по нескольким причинам:
- Теория геометрии Лобачевского помогает взглянуть по-другому на окружающий нас мир.
- Это интересный, необычный и прогрессивный раздел современной геометрии.
- Она дает материал для размышлений – в ней не все просто, не все ясно с первого взгляда, чтобы ее понять, нужно обладать фантазией и пространственным воображением.
Работая над данным проектом, я поставила перед собой такие задачи, как рассмотреть историю возникновения неевклидовой геометрии, познакомиться с личностью Лобачевского и его работой и определить значение геометрии Лобачевского в современной науке.
Планируемые результаты обучения
Перечислите планируемые результаты, достижение которых учащимися будет оцениваться после завершения проекта, в терминах личностных, метапредметных и предметных умений учащихся. Это должны быть конкретные и проверяемые пункты. Начните заполнение этого раздела с фразы «После завершения проекта учащиеся приобретут следующие умения":
После завершения проекта учащиеся приобретут следующие умения:
- личностные:
-самостоятельно искать нужную информацию и правильно ее использовать;
-формировать познавательный интерес к предмету;
-способность к самоорганизации и саморазвитию;
-умение хорошо говорить и правильно излагать свои мысли.
- метапредметные:
- предметные:
Вопросы, направляющие проект
Существует ли геометрия, которая отличается от привычной нам евклидовой геометрии?
Проблемные вопросы
- Как возникла неевклидова геометрия?
- Для чего нужна неевклидова геометрия?
- Какое значение имеет геометрия Лобачевского в современной науке?
Учебные вопросы
- Кто такой Н.И. Лобачевский?
- Как и когда он сделал свое открытие?
- Что представляет собой геометрия Лобачевского?
- Какие существуют модели геометрии?
- Где применяется геометрия Лобачевского?
Этапы и сроки проведения проекта
Этап 1:
Этап 2:
Этап 3: